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Although gene–environment correlation is recognized and investi-
gated by family studies and recently by SNP-heritability studies,
the possibility that genetic effects on traits capture environmental
risk factors or protective factors has been neglected by polygenic
prediction models. We investigated covariation between trait-
associated polygenic variation identified by genome-wide association
studies (GWASs) and specific environmental exposures, controlling
for overall genetic relatedness using a genomic relatedness matrix
restricted maximum-likelihood model. In a UK-representative sample
(n = 6,710), we find widespread covariation between offspring trait-
associated polygenic variation and parental behavior and character-
istics relevant to children’s developmental outcomes—independently
of population stratification. For instance, offspring genetic risk for
schizophrenia was associated with paternal age (R2 = 0.002; P =
1e-04), and offspring education-associated variation was associated
with variance in breastfeeding (R2 = 0.021; P = 7e-30), maternal
smoking during pregnancy (R2 = 0.008; P = 5e-13), parental smacking
(R2 = 0.01; P = 4e-15), household income (R2 = 0.032; P = 1e-22),
watching television (R2 = 0.034; P = 5e-47), and maternal education
(R2 = 0.065; P = 3e-96). Education-associated polygenic variation also
captured covariation between environmental exposures and child-
ren’s inattention/hyperactivity, conduct problems, and educational
achievement. The finding that genetic variation identified by trait
GWASs partially captures environmental risk factors or protective
factors has direct implications for risk prediction models and the in-
terpretation of GWAS findings.
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Environmental exposures are among the best early predictors
of developmental outcomes. For instance, maternal smoking

during pregnancy, socioeconomic deprivation, and time spent
watching television and playing video games are associated with
lower academic achievement (1–9). Harsh parental physical
discipline such as hitting has been linked to increased emotional
and behavioral problems including aggression in adolescence
(10–14). Paternal age is a risk factor for a range of disorders and
subclinical phenotypes including low academic achievement (15),
with the link to autism spectrum disorders and schizophrenia
most robustly replicated (16–21). Breastfeeding and higher pa-
rental socioeconomic status (education, income, occupation) are
protective factors for a range of outcomes including educational
achievement (7, 8, 22).
Evidence from many family, twin, and adoption studies con-

verges in showing that individuals’ exposure to environments par-
tially depends on their genotype (i.e., genotype–environment
correlation). This includes both parenting characteristics and broad
socioeconomic variables; all are partially heritable (23–28). In the
past decade, quantitative genetic research of this type has been
extended to explore genetic and environmental contributions to

correlations between environmental factors and children’s out-
comes (29–32). Some new designs such as the children-of-twins
designs make it possible to tease apart different types of geno-
type–environment correlation and identify environmental influ-
ences free of genetic confounds (33–37). These designs are limited
by the extent to which environmental variables differ between close
relatives.
Converging evidence for gene–environment correlation comes

more recently from “single nucleotide polymorphism (SNP)-
heritability” studies that estimate overall genetic influences from
genome-wide DNA differences in unrelated individuals. These
studies have shown that variation in individuals’ social depriva-
tion, household income, stressful life events, and family socio-
economic status partially reflects individuals’ differences across
genome-wide common genetic variants measured on SNP arrays
(38–44). There have also been a few reports of extending SNP
heritability analysis to estimate genetic correlations between
environmental measures and measures of children’s develop-
mental outcomes (38–40).
Gene–environment correlation is recognized and investigated

by family studies and recently by SNP-heritability studies. How-
ever, the possibility that genetic effects on traits capture envi-
ronmental risk factors or protective factors has been neglected
by polygenic prediction models, which use trait-associated genetic

Significance

Environmental exposures are among the best predictors of health
and educational outcomes. Models that estimate the effect of
environmental exposures on developmental outcomes typically
ignore genetic factors or focus on gene–environment interaction
(whether individuals’ response to environmental exposures de-
pends on their genotype). Here we test gene–environment cor-
relation (whether individuals’ exposure to environments depends
on their genotype). Using a method that tests specific genetic
effects while controlling for background genetic effects, we es-
timate covariation between children’s genetic liability/propensity
for core developmental outcomes and a wide range of environ-
mental exposures. Findings suggest that genetic variants associ-
ated with traits, such as educational attainment, body mass
index, and schizophrenia, also capture environmental risk and
protective factors.

Author contributions: E.K. and R.P. designed research; E.K. performed research; E.K.,
L.J.H., H.P., N.K., C.C., G.B., and S.J.N. contributed new reagents/analytic tools; E.K. ana-
lyzed data; and E.K., L.J.H., J.-B.P., T.C.E., P.F.O., and R.P. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. C.F.C. is a guest editor invited by the Editorial
Board.
1To whom correspondence may be addressed. Email: eva.krapohl@kcl.ac.uk or robert.
plomin@kcl.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1707178114/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1707178114 PNAS | October 31, 2017 | vol. 114 | no. 44 | 11727–11732

G
EN

ET
IC
S

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
31

, 2
02

1 

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1707178114&domain=pdf
mailto:eva.krapohl@kcl.ac.uk
mailto:robert.plomin@kcl.ac.uk
mailto:robert.plomin@kcl.ac.uk
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707178114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707178114/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1707178114


www.manaraa.com

variants identified by genome-wide association studies (GWASs)
to estimate individual-level genetic trait propensities for trait
prediction.
Here we tested whether genetic variation identified by trait

GWASs captures variation in environmental risk factors or
protective factors. Specifically, as children’s environments and
genetic propensities are both “provided by” their parents, these
are expected to correlate because parents pass on genetic variants
to their offspring that influence parents’ environment-providing
behaviors. Therefore, we examine to what extent offspring trait-
associated alleles covary with parental traits and behaviors pre-
viously reported to be environmental risk or protective factors
for important child outcomes. We also tested to what extent
offspring genetic trait propensities contribute to the correlation
between parenting characteristics and children’s developmental
outcomes.
First, we conducted a systematic investigation of covariation

between children’s genetic propensities for specific developmental
outcomes and a wide range of environmental exposures previously
shown to be risk or protective factors for these outcomes (SI
Appendix, Methods S3). We focus on genetic propensities—that is,
individual-specific genomic profiles of trait-associated alleles—for
three core developmental outcomes: educational attainment (45),
body mass index (BMI) (46), and schizophrenia (47). These traits
from three important domains of child development—social-
cognitive, mental health, and physical health—each are robust
predictors of mortality and life expectancy, with substantial asso-
ciated societal and personal burden (48–55). They were chosen
because of the availability of statistically powerful GWAS sum-
mary statistics for these traits (56).
Second, we tested whether the environmental exposures pre-

dicted children’s developmental outcomes (as would be expected
based on previous literature) and to what extent these associations
are captured by children’s polygenic propensities for education,
BMI, and schizophrenia. For this, we examined associations be-
tween the environmental exposures and three developmental
outcomes assessed at age 16 in our sample: educational achieve-
ment, inattention-hyperactivity symptoms, and conduct problems
(SI Appendix, Methods S3).
We used a sample of 6,710 unrelated individuals, drawn from

the Twins Early Development Study (TEDS), for whom genotype
data and a wide range of specific environmental exposure mea-
sures and developmental outcomes from birth to adolescence are
available. TEDS is a multivariate longitudinal study that recruited
over 11,000 twin pairs born in England and Wales in 1994, 1995,
and 1996 (57, 58), shown to be representative of the UK pop-
ulation (38, 59).
We created genome-wide polygenic scores for trait-associated

genetic variants for each individual in the sample using summary
statistics from the independent GWAS of years of education
(EDU) (45), BMI (46), and schizophrenia (SCZ) (47). We used
a Bayesian approach (60) that estimates posterior mean effect
size of each marker by using a point-normal mixture prior on
effect sizes and linkage disequilibrium (LD) information (Mate-
rials and Methods).
Because of the salience of possible population stratification

when investigating the genetic effect on differences in environ-
mental exposures, we estimated the effect of the polygenic scores
while controlling for overall genetic relatedness in the form of a
genomic relatedness matrix restricted maximum likelihood model.
Specifically, we fit the effects of all SNPs as random effects, while
estimating the fixed effects of the polygenic scores (Materials
and Methods).

Results
To estimate the univariate effect of each polygenic score on the
environmental exposures, we fit a series of single-score models,
which reveal significant trait-associated polygenic effects across a
wide range of environmental exposures. Fig. 1, Left (and SI
Appendix, Table S1) shows the estimated variance explained by
each polygenic score for each of the environmental measures.

Environmental factors varied significantly as a function of
trait-associated polygenic variation, independently of population
stratification. This provides evidence for trait-associated genotype–
environment correlation. However, given the robust evidence for
extensive pleiotropy across complex traits (61), we aimed to isolate
the effects of each trait-associated polygenic score using a multi-
score model. To test the trait specificity of the polygenic effects on
environmental exposures, we jointly modeled the three scores for
years of education, BMI, and schizophrenia, allowing us to esti-
mate the effects of each polygenic score while statistically adjusting
for the effects of the others. Fig. 1, Right (and SI Appendix, Table
S2) shows that the multiscore models revealed some attenuation of
the polygenic score effects compared with the single-score models,
suggesting that the effects of the three scores on environmental
exposures are nonindependent. Specifically, the effects of BMI-
associated polygenic variation on several environmental mea-
sures (including watching television and parental education)
were no longer significant.
Breastfeeding duration was positively associated with offspring

education polygenic score, adjusted for BMI and schizophrenia
polygenic scores (R2 = 0.021, beta = 0.144; P = 7e-30). Fig. 2A
displays children’s adjusted education polygenic score as a function
of whether and for how long they were breastfed. Children who
were breastfed had, on average, an education polygenic score ap-
proximately one third SD higher (Hedges’ g = 0.30) than children
who were not breastfed (t = −11.55, df = 5,664.2, P = 1.6e-30).
Maternal smoking during pregnancy was negatively associated

with offspring education polygenic score adjusted for BMI and
schizophrenia polygenic scores (R2 = 0.008, beta = −0.090; P = 5e-
13; Fig. 2B). Children exposed to maternal smoking prenatally
had, on average, an education polygenic score approximately one
quarter SD lower (Hedges’ g = 0.26) than children whose mothers
did not smoke (t =7.93, df = 1,556.3; P = 4e-15).
Other effects of education-associated polygenic variation on en-

vironmental exposures included 3.3% in household income (beta =
0.181, P = 1e-22), 6.5% in maternal education level (beta = 0.255,
P = 3e-96), 1% in parental smacking (beta = −0.10, P = 4e-15), and
3.4% in television watching in the household (beta = −0.184,
P = 5e-47).
Offspring genetic risk for schizophrenia was positively associ-

ated with paternal age, even when adjusting for education and
BMI-associated polygenic variation (R2 = 0.002, beta = 0.049;
P = 1e-04). Fig. 2C shows children’s adjusted genetic risk for
schizophrenia as a function of paternal age. Children whose fa-
ther was aged over 45 at their birth had, on average, a genetic
risk score for schizophrenia over one quarter SD (Hedges’ g =
0.26) higher than children whose father was under the age of
26 at their birth (t = −3.01, df = 411.91; P = 3e-03).
Next, we examined the extent to which associations between

environmental exposures and developmental outcomes were
explained by trait-associated polygenic variation for education,
BMI, and schizophrenia (SI Appendix, Fig. S3). We examined
associations between environmental exposures and three de-
velopmental outcomes: educational achievement, inattention-
hyperactivity symptoms, and conduct problems. Of the three
polygenic scores, only the education polygenic score captured
covariation between environmental exposures and the three
developmental outcomes (SI Appendix, Table S3).
On average education-associated polygenic variation explained

15% of the associations between the environmental measures and
children’s developmental outcomes. For example, the education
polygenic score explained 23% (P = 1.2e-18) of the beta = 0.19
covariance between child educational achievement and breast-
feeding. Education-associated polygenic variation also captured
6% (P = 1.9e-05) and 7% (P = 4.4e-06) of the associations be-
tween parental slapping/smacking and conduct problems and hy-
peractivity/inattention problems (beta = 0.20 for both).

Discussion
We report evidence for covariation between trait-associated poly-
genic variation and early environmental exposures independently

11728 | www.pnas.org/cgi/doi/10.1073/pnas.1707178114 Krapohl et al.
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of population stratification. We show that a wide range of parental,
neighborhood, and parent–child perinatal characteristics, repre-
senting key early life “environmental” influences, present at birth
or early in life, correlate with offspring genetic propensity—
specifically, with the allele frequency at loci associated with educa-
tion, BMI, and schizophrenia. We also demonstrate that covariance
between environments and important developmental outcomes are
partially captured by education-associated polygenic variation.
The present study combines family and molecular data. In ad-

dition to replicating the general finding that individuals’ environ-
mental exposures vary as a function of their genotype, the current
findings suggest that trait GWASs are detecting genetic variants
associated with parental characteristics and their correlation with
child outcomes.
Importantly, the association between exposures and outcomes

was by no means entirely captured by offspring trait-associated
polygenic variation. There are three likely, nonmutually exclusive,
explanations for this. First, a substantial proportion of the exposure–
outcome associations is likely due to nongenetic factors. Second,
polygenic scores intrinsically underestimate the total genetic effects
on the exposure–outcome associations because they are limited
to the additive effects of common variants on a particular trait that
the discovery GWAS was powered to detect. Third, we only mea-
sure offspring polygenic variation, but offspring phenotype can be
influenced not only by transmitted but also by nontransmitted pa-
rental alleles via parental phenotype (i.e., child exposure).
The education-associated polygenic variation showed the stron-

gest and most consistent correlations with environmental exposures.
This is consistent with research showing associations between
educational attainment and many parental behaviors and charac-
teristics (e.g., refs. 12, 31, 62, and 63). Moreover, the multipolygenic
score models showed that the association between BMI-associated
polygenic variation and environmental exposures such as televi-
sion watching and parental education is explained by education-
associated genetic variations. This suggests the potential for

multipolygenic models for isolating polygenic effects, provided the
underlying discovery GWASs are similarly powered. The finding
of an association between paternal age and offspring genetic risk
for schizophrenia is consistent with previous evidence for older
fathers’ elevated risk for conceiving a child who will go on to
develop schizophrenia (18, 19, 63). Although the current find-
ings provide evidence for the relevance of gene–environment
correlation for polygenic trait prediction methods, they are not
informative about the mechanisms involved.
The observed associations could arise from passive or active

gene–environment correlation or via environmentally mediated
genetic effects, all of which are nonmutually exclusive. Fig. 3 illus-
trates these possibilities schematically. Many of the observed asso-
ciations between offspring genotype and environment-providing
parental characteristics are outside of the offspring’s influence (e.g.,
parental age and education level at child birth) and are therefore
likely to result from passive gene–environment correlation. That is,
parental genetic propensities that were passed down to offspring are
also associated with environment-providing parental behavior
(through both path a and b, Fig. 3). However, some of the inves-
tigated parental behaviors could partially be evoked by offspring
genetic propensities (through paths c and d in Fig. 3; e.g., breast-
feeding, watching television). Finally, genetic correlations could
arise as a result of environmentally mediated genetic effects (e.g., if
education-associated genetic variation influenced mothers’ predis-
position to smoke during pregnancy and prenatal exposure to nic-
otine had an environmental effect on offspring attention problems,
this could result in offspring education-associated polygenic varia-
tion being associated with maternal smoking pregnancy as well as
capturing part of its correlation with offspring attention problems).
The design of the current study is unable to distinguish envi-

ronmentally mediated genetic effects, passive, and evocative gene–
environment correlations. One way to investigate the contributions
of these different mechanisms would be to use samples incor-
porating parental genotype data. In analyses of such samples,
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Fig. 1. (Left) Single-polygenic score models: associations between polygenic scores and environmental exposures and single-predictor effects of polygenic
scores for years of education, BMI, and schizophrenia on the environmental exposures. (Right) Multipolygenic score models: joint estimation of effects of
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0.05 (see Materials and Methods).
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confounding of offspring genotype by parental genotypes could
be accounted for. Provided that paternal, maternal, and offspring
genotype and phenotype data were available in a single sample,
cross-generational effects of genetics and environment could be
further disentangled (see Fig. 3 for schematic illustration).
Nurture has a genetic component; trait-associated alleles in the

offspring explain variation in environment-providing parental be-
haviors and their covariation with offspring developmental outcomes.
This provides evidence that the observed effects from GWASs are
not only reflecting direct trait effects. This evidence resonates with
the hypothesis that trait GWASs capture variation in risk factors as
well as direct genetic effects on the trait (64). Here we showed that
polygenic scores derived from trait GWASs predict variation in
variables beyond the target trait, including variables often presumed
to be environmental in origin such as parenting. This suggests in-
corporating genetic variants associated with environmental risk or
predictive factors into polygenic prediction models might improve
trait prediction.
In summary, we show that genetic variation identified by trait

GWASs partially captures environmental risk or protective factors,
indicating that some of the same genetic variation underlies both
traits and environments. In contrast to the conceptual dichotomy
often imposed between traits and environments, this finding implies
that the pleiotropy widely found in phenome–genome associations
also crosses over to the realm of environments and manifests across
generations. Findings illustrate the relevance of gene–environment
correlation for polygenic prediction models and that combining
family and molecular data might help reveal mechanisms by which
genetic variation is translated into phenotypic variation.

Materials and Methods
We used genome-wide SNP and environment-wide phenotype data from
6,710 unrelated individuals drawn from the UK-representative TEDS (57, 58).
TEDS data can be accessed in accordance with the Data Access Policy, which
can be viewed at www.teds.ac.uk/research/collaborators-and-data/teds-data-
access-policy. We processed the 6,710 genotypes using stringent quality con-
trol procedures followed by imputation of SNPs to the Haplotype Reference
Consortium reference panel (65) (SI Appendix, Methods S1). This included re-
moving one individual from any pair of individuals with an estimate SNP
marker relatedness > 0.05. After quality control, 7,581,516 genotyped or well-
imputed (info > 0.70) variants remained.

Polygenic Scores. For each individual in the sample, we created polygenic scores
for years of education, schizophrenia, and BMI. After coordinating overlapping
markersbetweeneachof the threeGWAsummary statistics and the targetdataby
excluding markers due to nucleotide inconsistencies or low minor allele fre-
quency (<1%), we retained 5,690,632 for the years of education (45), 5,781,731
for schizophrenia (47), and 1,810,667 for BMI (46). We constructed polygenic
scores as the effect-size weighted sums of individuals’ trait-associated alleles
across all SNPs. We used LDpred (60), which places a prior on the markers’ effect
sizes and adjusts summary statistics for LD between markers. For each trait, we
created the score using three different priors on the fraction of causal markers—
0.01, 0.1, and 1.0—from which the one yielding the largest R2 in the single-
polygenic score models was then entered into the multipolygenic score model.
For details on the polygenic score construction, see SI Appendix, Methods S2.

To account for population stratification, we adjusted the polygenic pre-
dictors by the first 30 principal components (PCs) generated from genotype
data before the analysis. We used the top 30 PCs as well as genotyping array
and plate to create a N × P matrix Z of eigenvectors across the P selected PCs.
We then regressed the genetic polygenic predictor onto the eigenvectors as
S = μ + Zβ + e, where μ is the mean and β is a P × 1 vector of the regression
coefficients and e is the residual error.

Single-Score and Multiscore Genomic-Relatedness Matrix Restricted Maximum-
Likelihood Models. When estimating genetic effects on environmental ex-
posures, the possibility of population stratification is especially salient. This is
because genetic and common environment effects, even if uncorrelated, may
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Fig. 2. (A) Offspring adjusted education polygenic score (standardized) by
level of breastfeeding. Education polygenic score was adjusted for schizo-
phrenia and BMI polygenic scores. Positive association (R2 = 0.021, beta =
0.144; P = 7e-30). Children who were breastfed had, on average, an edu-
cation polygenic score approximately one third SD higher (Hedges’ g = 0.30)
than children who were not breastfed (t = −11.55, df = 5,664.2; P = 1.6e-30).
(B) Offspring adjusted education polygenic score (standardized) by level
of maternal smoking during pregnancy. Education polygenic score was
adjusted for schizophrenia and BMI polygenic scores. Negative association
(R2 = 0.008, beta = −0.090; P = 5e-13). Children exposed to maternal smoking
prenatally had, on average, an education polygenic score approximately one
quarter SD lower (Hedges’ g = 0.26) than children whose mothers did not
smoke (t = 7.93, df = 1,556.3; P = 4e-15). (C) Offspring adjusted schizo-
phrenia polygenic score (standardized) by paternal age at birth of offspring.
Genetic risk for schizophrenia was adjusted for education and BMI polygenic
scores. Positive association (R2 = 0.002, beta = 0.049; P = 1e-04). Children
whose father was aged over 45 at their birth had, on average, a genetic risk
score for schizophrenia over one quarter SD (Hedges’ g = 0.26) higher than

children whose father was under the age of 26 at their birth (t = −3.01, df =
411.91; P = 3e-03). Horizontal lines and bars represent means and 95%
confidence intervals. Violin shapes represent probability densities.

11730 | www.pnas.org/cgi/doi/10.1073/pnas.1707178114 Krapohl et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
31

, 2
02

1 

http://www.teds.ac.uk/research/collaborators-and-data/teds-data-access-policy
http://www.teds.ac.uk/research/collaborators-and-data/teds-data-access-policy
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707178114/-/DCSupplemental/pnas.1707178114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1707178114/-/DCSupplemental/pnas.1707178114.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1707178114


www.manaraa.com

be confounded as close relatives share both genes and their environment to a
greater extent than other individuals. We control this type of confounding
because, under only population stratification, we would not expect an as-
sociation between polygenic predictors and environmental measures within
the mixed effect model of Eqs. 1 and 2. This is because they account for
population stratification by both regressing PCs from the polygenic predic-
tors (see above) and fitting a relationship matrix estimated from all SNP
markers (see below).

To estimate the degree to which trait-associated polygenic variation
captures variation in environmental measures, we estimated the relationship
between the polygenic scores and the environmental measures, while con-
trolling for net genetic relatedness by fitting the effects of all of the SNPs as
random effects by a mixed linear model:

Single-score model :   varðyÞ= μ+ Siβ+Aσ2g + Iσ2e [1]

Multiscore model :   varðyÞ= μ+ SBMIβ+ SSCZβ+ SEDUβ+Aσ2g + Iσ2e, [2]

y is an n × 1 vector containing the level of environmental exposure, with n
being the sample size. β is a vector of fixed effects estimating the effects of
the polygenic predictor, independently of overall genetic relatedness g.

In the single-score model (Eq. 1), Si is a vector containing individuals’ poly-
genic score for one of i ∈ [years of education (EDU) (45), BMI (46), schizo-
phrenia (SCZ) (47)], adjusted for 30 PCs, genotyping array, and plate (see
section above). g is an n × 1 vector of the total genetic effects of the indi-
viduals, independently of β, with g ∼ N(0,Aσ2g), and A is interpreted as the
genetic relationship matrix (GRM) between individuals (MAF > 0.01; re-
latedness < 0.05 as described above). The genomic relationship of each pair of
subjects j and k is calculated as Ajk = 1N

P
Ni = 1(xij − 2pi)(xik − 2pi)/2pi(1 − pi)

with xij being the number of copies of the reference allele for the ith SNP of
the jth individual and pi being the frequency of the reference allele (66).

In the multiscore model (Eq. 2), the effects of the three polygenic predictors
are being estimated jointly, thereby allowing the effect of each polygenic
predictor independently of each other and of overall genetic relatedness g.

The genetic relatedness matrix accounts for population stratification in the
environmental exposure, because it is equivalent to fittingall of the PCswithin the
model. Eqs. 1 and 2 were estimated using the restricted maximum likelihood
(REML) approach implemented in the reml function in GCTA v1.26.0 (67).

Decomposition of Covariance Between Environmental Exposures and Developmental
Outcomes. We fit structural equation models to decompose the covariance
betweenenvironmental exposures anddevelopmental outcomes into effects of
the three polygenic scores and residual covariance (SI Appendix, Fig. 3). The

total covariance estimated as Covtotal = ða *dÞ+ ðb* eÞ+ ðc * fÞ+g was decom-
posed into the effect of the education score CovEDU = ða *dÞ, that of the BMI
score:CovBMI = ðb* eÞ, that of the schizophrenia score CovSCZ = ðc * fÞ, and re-
sidual covariance g. We usedmaximum likelihood estimation with robust (Huber–
White) SEs. The analyses were conducted using the lavaan package in R (68).

Multiple Testing Correction. P values obtained for each statistic were corrected
for multiple testing using the �Sidák correction (69). The �Sidák adjusted alpha
level is equal to1 − (1 − α)(1/k), where k is the number of tests. The total number
of tests was: 357, with 153 (3 scores × 3 priors × 17 exposures) tests for the
single-polygenic score models, 51 (3 scores × 17 exposures) tests for the mul-
tipolygenic score model, and 153 (3 scores × 17 exposures × 3 outcomes) test for
the decomposition of covariance models. The multiple comparison adjustments
were applied to α = 0.05. Hence, the corrected “experimentwise” α level was
1 − (1 − 0.05)(1/357) = 1.44e-04.

Environmental Exposures and Child Outcome Measures. For a detailed de-
scription of all measures, see SI Appendix, Methods S3.
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Fig. 3. Schematic illustration of cross-generational
effects within family triad. Because of the lack of pa-
rental genotype data, the present study was unable to
distinguish passive and evocative gene–environment
correlation. Passive gene–environment correlation:
am,p × bm,p. Evocative gene–environment correlation:
c × bm,p. Offspring phenotype can be influenced by
both the transmitted paternal and maternal alleles
(red arrows) and by nontransmitted alleles via paren-
tal phenotype (green arrows). Provided that paternal,
maternal, and offspring genotype and phenotype
data were available in a single sample, the effect of
parental trait-associated alleles on offspring pheno-
type independently of genetic sharing between par-
ents and offspring (green arrows) could be estimated
(70–72). A testable assumption for investigating these
mechanisms is there is no correlation between paren-
tal genotypes and between each parent’s haplotypes
(i.e., assortative mating) (yellow arrows).
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